Icosahedral Maps for a Multiresolution Representation of Earth Data

Mohammad Imrul Jubair
Visualization and Graphics Group

Outline

- Introduction
- Research Questions
- Contributions
- Literature Review
- Methodology
- Results
- Future Work

Introduction

- The icosahedral non-hydrostatic (ICON) model is a digital Earth model that is used for numerical weather prediction.
- Designed via Discrete Global Grid Systems (DGGS).

Digital Earth

Discretization of DE

- Data are assigned to the cells of an underlying discretization of the Earth.
- Each cell represents a particular region and receives a unique index.
- Fast data access and/or hierarchical or adjacency queries.

Parameterization

- Latitude / Longitude parameterization
- Problems: Cells becomes smaller approaching to the poles, poles are singularities, cells incident to the poles are triangular.

DCCS

Five Design choices:

1. A base regular polyhedron.
2. A fixed orientation of the base regular polyhedron relative to the Earth.
3. A hierarchical spatial partitioning method defined symmetrically on a face (or set of faces) of the base regular polyhedron.
4. A method for transforming that planar partition to the corresponding spherical/ ellipsoidal surface.
5. A method for assigning points to grid cells

DGCS: Base Polyhedron

- The tetrahedron, cube, octahedron, icosahedron and dodecahedron.

Icosahedron shows less triangular and area distortion under equal area projection.

DGGS: Orientation

- In the case of the icosahedron, the most common orientation is to place a vertex at each of the poles and then align one of the edges emanating from the vertex at the north pole with the prime meridian.

DCGS: Partitioning

- Creating multiple resolution discrete grids
- Defining subdivision methodology on faces

DCCS: Transformation

- Creating a similar topology on the corresponding spherical or ellipsoidal surface.

Sphere partitioning

Types of projections:

- Snyder
- Song
- Fuller/ Gray
- ZOT

Source: Comparing area and shape distortion on polyhedral-based recursive partitions of the sphere, Geodesic Discrete Global Grid Systems

DGCS: Assigning points to grid cells

- Usually centroids of the cell region
- Can be specified as - vertices of the triangle, vertices of the dual of the triangles
- Next step: Arrange the prognostic variables on the grid cells (assign data)

Grid Staggering

- When all the prognostic variables are defined at the same point in a grid, it is called an unstaggered grid (A- Grid).
- When prognostic variables are defined at more than one point in a grid, it is called a staggered grid.
- B-Grid
- C-Grid
- D-Grid
- E-Grid

Grid Staggering

(A)

(D)

(B)

(E)

(C)

Grid Staggering

(A)

(B)

- C-Grid is popular in Weather Research and Forecasting Model
- e.g. ICON (Icosahedral non-hydrostatic)

ICON

- Joint project of MPI-DWD
- Used for NWP and climate research
- Icosahedral grid with C-grid staggering

Source: The Non-hydrostatic Icosahedral Atmospheric Model: description and development

ICON

ICON

ICON

ICON

ICON

Hexagonal cells, Quadrilateral cells and Triangular cells

Research Coal

Research Coal

- Wavelets on Digital Earth data for multiresolution visualization
- Must work for all types of cellular data: Center of the hexagons, Center of the quads and Center of the triangles.
- Need a common data structure
- Application of wavelets:
- Apply Compression
- Observing its performance

Methodology

Multiresolution Scheme

- Based on the work of Cohen and Schlenker
- Works for triangular grid
- Perfect reconstruction

Multiresolution Scheme

$$
\begin{aligned}
& C=\left(F * \dot{\circ}_{0}\right)_{\downarrow 4}, \\
& D_{i}=\left(F * \stackrel{⿳ ㇒ ⿻ 丷 一 ⿱ 丷 干 丷}{i}^{)_{\downarrow 4}}, \quad \text { where } i=1,2,3 .\right. \\
& F=(C)_{\uparrow 4} * w_{0}+\sum_{i=1}^{3}\left(\left(D_{i}\right)_{\uparrow 4} * \dot{w}_{i}\right)
\end{aligned}
$$

Multiresolution Scheme

$$
\begin{aligned}
& C=\left(F * \stackrel{\circ}{w}_{0}\right)_{\downarrow 4} \\
& D_{i}=\left(F * \stackrel{\circ}{w}_{i}\right)_{\downarrow 4}, \quad \text { where } i=1,2,3 . \\
& F=(C)_{\uparrow 4} * w_{0}+\sum_{i=1}^{3}\left(\left(D_{i}\right)_{\uparrow 4} * \grave{w}_{i}\right)
\end{aligned}
$$

Conversion

Conversion

Benefits:

- Highpass and lowpass filters remains consistent.
- Common data structure to handle neighbouring information.
- Triangles are GPU friendly (faces can be rendered using barycentric interpolation)

Icosahedral Map

Icosahedral Map

- Digital Earth grid is unstructured
- We need to store is in structured manner (inspired from ACM)
- We want to store the vertex information in 2D array (Connectivity Map)

Icosahedral Map

- Digital Earth grid is unstructured
- We need to store is in structured manner (inspired from ACM)
- We want to store the vertex information in 2D array (Connectivity Map)

Icosahedral Map

- Digital Earth grid is unstructured
- We need to store is in structured manner (inspired from ACM)
- We want to store the vertex information in 2D array (Connectivity Map)

Icosahedral Map

- Digital Earth grid is unstructured
- We need to store is in structured manner (inspired from ACM)
- We want to store the vertex information in 2D array (Connectivity Map)

Icosahedral Map

Icosahedral Map

Icosahedral Map: CoH

- Center of Hexagons \rightarrow Vertices of Triangles (Already!)
- Need to find connectivity information and store it in 2D array

Icosahedral Map: CoH

Icosahedral Map: CoH

(f)

(g)

(h)

connectivity $\left(\mathrm{C}, \mathrm{Q}_{\mathrm{i}}, \mathrm{Q}_{\mathrm{i}+1}\right) \rightarrow \mathrm{Q}_{\mathrm{i}+2}, \mathrm{i}=1,2,3,4$

Icosahedral Map: CoH

(a)
change of basis vector h :

change of basis vector v :

(c)
(b)

Icosahedral Map: CoH

Icosahedral Map

Icosahedral Map: CoH

Icosahedral Map: CoH

Icosahedral Map: CoQ

- Center of Quads \rightarrow Edge midpoints of Triangles

Icosahedral Map: CoQ

Icosahedral Map: CoQ

Icosahedral Map: CoQ

Icosahedral Map: CoQ

Icosahedral Map: CoO

Icosahedral Map: CoQ

Icosahedral Map: CoT

- Center of Triangles \rightarrow Vertices of The voronoi cell (hexagon)

Icosahedral Map: CoT

Icosahedral Map: CoT

(a)
pentagon

Icosahedral Map: CoT

(b)

(c)

(d)

(e)

(f)

(g)

Icosahedral Map: CoT

(a)

(b)

Icosahedral Map: CoT

Icosahedral Map: CoT

Compression

Zero out magnitudes in details based on threshold

Compression

Future Work

- Reduce Empty spaces in array
- Create a single array that holds the entire polyhedron net
- GPU implementation
- Bricking

Thanks

