A Hexagonal Box Spline Wavelet for Level of Detail Visualization of Digital Earth Data

Mohammad Imrul Jubair, Ali Mahdavi-Amiri, Usman Alim and Faramarz Samavati

Introduction

Motivation

- Multiresolution analysis provides facilities to visualize large data a different levels of detail (LoD) while providing the advantages of efficient data compression and transmission.

Contribution

- In this work, hexagonally sampled geospatial data on Digital Earth at a fine level is taken as an input and a hierarchical traversal is applied by applying decomposition and reconstruction methods.
- Multiresolution filters are designed based on the three directional Multiresolution filters are designed based on the three direction
linear box-spline which is natively supported by modern GPUs.

Method

Data Structure: Atlas of Connectivity Maps ${ }^{[1]}$

- Connectivity information of the vertices on Digital Earth surface is stored in two dimensional array.

Method

Multiresolution Filters:

Weight Filter (w): From the orthogonality constraint:

Multiresolution Scheme:
Decomposition:
$C=\left(((F * u) * b)_{\downarrow 2}\right) * b^{-1}$
$D=\left((F * w)_{\downarrow 2}\right) * b^{-1}$
Reconstruction
$F=\left(C_{\uparrow 2}\right) * u+\left(D_{\uparrow 2}\right) * w$
Where, F is the data at fine level. C and D are coefficient and detail at coarse level respectively.

$\frac{1}{2}\left[W(z) U_{2}^{n}(z) B_{1}^{2 n+1}(z)\right.$ $\left.+W(-z) U_{2}^{n}(-z) B_{1}^{2 n+1}(-z)\right]=0$

Results

Data set : ICON (ICOsahedral Non-hydrostatic)

Mean Square Error 4.053×10^{-12}

Reconstructed to fine level

Future Work
\square Applying the multiresolution scheme on larger scale data set.
Investigating the error occurred during reconstruction.

References

[1] Mahdavi-Amiri, Ali., and Samavati, Faramarz., "Atlas of Connectivity Maps for Semiregular Models", Proceedings of Graphics Interface, 2013, pp. 99-107 [2] Unser, M., Aldroubi, A., Eden, Murray., "A family of polynomial spline wavelet transforms", Signal Processing, Elsevier, 1993, Volume 30, Issue 2, pp. 141-162 [3] Condat, L., Van De Ville, D., and Unser, M., "Efficient Reconstruction of Hexagonally Sampled Data using Three-Directional Box-Splines", IEEE International Conference on Image Processing, 2006, pp. 697-700.

