Bresenham's Circle Drawing Algorithm

\author{

- Mohammad Imrul Jubair
}

The Scenario

Given,
Radius R circumference

The Scenario

Given,
Radius R circumference

We have to develop an algorithm that generates this circumference

Assumptions

Given,
Radius R

Assumptions

The first pixel of the circumference is plotted on ($0, R$)
Given,
Radius R

Assumptions

The first pixel of the circumference is plotted on ($0, \mathrm{R}$)
Then the plotting of next pixels starts clock-wise....

Observation

The first pixel of the circumference is plotted on ($0, \mathrm{R}$) Then the plotting of next pixels starts clock-wise....

That means the plotting starts from ($0, R$) and moving into the $2^{\text {nd }}$ Octant

Observation

> while moving through the $2^{\text {nd }}$ octant, the X value is increasing and Y value is decreasing

Observation

Observation

Observation

Observation

So, if we can obtain (X, Y) in $2^{\text {nd }}$ octant, we can calculate the points-

- $7^{\text {th }}$ Octant : $(\mathrm{X},-\mathrm{Y})$
- $6^{\text {th }}$ Octant: $(-X,-Y)$
-3 $3^{\text {rd }}$ Octant : (-X, Y)

Observation

So, if we can obtain (X, Y) in $2^{\text {nd }}$ octant, we can simply swap X and Y to get the points-

- $1^{\text {st }}$ Octant : (Y, X)
- $8^{\text {th }}$ Octant : $(\mathrm{Y},-\mathrm{X})$
- $5^{\text {th }}$ Octant : $(-Y,-X)$
- $4^{\text {th }}$ Octant : $(-Y, X)$

Using symmetric property of circle

So, if we can obtain
(X, Y) in $2^{\text {nd }}$ octant, we can calculate the points in other 7 octants

So, our target is to get the pixels of only $2^{\text {nd }}$ octant of the circumference

Bresenham's Circle Drawing Algorithm: How it works

Next pixel is chosen (from E or SE) to build the line successively

Bresenham's Circle Drawing Algorithm: How it works

Next pixel is chosen (from E or SE) to build the line successively

Bresenham's Circle Drawing Algorithm: How it works

Next pixel is chosen (from E or SE) to build the line successively

Bresenham's Circle Drawing Algorithm: How it works

Next pixel is chosen (from E or SE) to build the line successively

Bresenham's Circle Drawing Algorithm: How it works

Next pixel is chosen (from E or SE) to build the line successively

Bresenham's Circle Drawing Algorithm: How it works

Next pixel is chosen (from E or SE) to build the line successively

Bresenham's Circle Drawing Algorithm: How it works

As we know that, In $2^{\text {nd }}$ Octant: $\mathbf{X}<\mathbf{Y}$ in $1^{\text {st }}$ Octant $: \mathbf{X}>\mathbf{Y}$

We will stop selecting E or $S E$ when $X>Y$, that means when $2^{\text {nd }}$ octant is completed

Equation of Circle and its function representation

$$
\begin{gathered}
x^{2}+y^{2}=R^{2} \\
F(x, y)=x^{2}+y^{2}-R^{2}=0
\end{gathered}
$$

Equation of Circle and its function representation

$$
x^{2}+y^{2}=R^{2}
$$

$F(x, y)=x^{2}+y^{2}-R^{2}=0$
© MIJ

Equation of Circle and its function representation

$$
F(x, y)=x^{2}+y^{2}-R^{2}
$$

If $\mathbf{F}(\mathbf{X}, \mathbf{Y})=\mathbf{0}$, the point (X, Y) on the circle

Equation of Circle and its function representation

$$
F(x, y)=x^{2}+y^{2}-R^{2}
$$

If $\mathbf{F}(\mathbf{X}, \mathbf{Y})=\mathbf{0}$, the point (X, Y) on the circle

If $\mathbf{F}(\mathbf{X}, \mathrm{Y})>\mathbf{0}$, the point (X, Y) is outside the circle

Equation of Circle and its function representation

$$
F(x, y)=x^{2}+y^{2}-R^{2}
$$

If $\mathbf{F}(\mathbf{X}, \mathbf{Y})=\mathbf{0}$, the point (X, Y) on the circle

If $\mathbf{F}(\mathbf{X}, \mathrm{Y})>\mathbf{0}$, the point (X, Y) is outside the circle

If $\mathbf{F}(\mathbf{X}, \mathrm{Y})<\mathbf{0}$, the point (X, Y) is inside the circle

Selecting E or SE

Selecting E or SE depends on closeness to the circumference. If E is closer to circumference, then E is selected If $S E$ is closer, then SE is selected

Selecting E or SE using Mid Point Criteria

If midpoint M is outside the circle, SE is closer to the circumference, So, $\mathbf{S E}$ is selected

If midpoint M is inside the circle, E is closer to the circumference, So, \mathbf{E} is selected

Selecting E or SE using Mid Point Criteria

We know, $F(x, y)=x^{2}+y^{2}-R^{2}$
Lets put the mid point \mathbf{M} 's coordinate in function $\mathrm{F}(\mathrm{X}, \mathrm{Y})$ $\mathrm{F}(\mathrm{M})=\mathrm{F}\left(\mathbf{X}_{\mathrm{P}}+\mathbf{1}, \mathrm{Y}_{\mathrm{P}}-\mathbf{0 . 5}\right)=\left(\mathbf{X}_{\mathrm{P}}+\mathbf{1}\right)^{\mathbf{2}}+\left(\mathrm{Y}_{\mathrm{P}} \mathbf{- 0 . 5}\right)^{\mathbf{2}}-\mathbf{R}^{\mathbf{2}}$

Lets store $\mathbf{F}(\mathbf{M})$ in a variable \mathbf{d}
So, $\mathbf{d}=\mathbf{F}(\mathbf{M})$
d is called 'decision variable'

Selecting E or SE using Mid Point Criteria

If $\mathbf{d}>=\mathbf{0}$, then midpoint M is outside the circle, SE is closer to the circumference, So, $\mathbf{S E}$ is selected

If $\mathbf{d}<\mathbf{0}$, then midpoint M is inside the circle, E is closer to the circumference, So, \mathbf{E} is selected

$$
\begin{aligned}
d_{1} & =F\left(M_{1}\right) \\
& =F\left(X_{P}+1, Y_{P}-0.5\right) \\
& =\left(X_{P}+1\right)^{2}+\left(Y_{P}-0.5\right)^{2}-R^{2}
\end{aligned}
$$

Bresenham's Mid Point Criteria : Successive Updating (for selecting E)

$$
\left.\begin{array}{rl}
d_{1} & =F\left(M_{1}\right) \\
& =F\left(X_{P}+1, Y_{P}-0.5\right) \\
& =\left(X_{P}+1\right)^{2}+\left(Y_{P}-0.5\right)^{2}-R^{2} \\
\text { If } & d_{1}
\end{array}\right)=0, E\left(X_{P}=X_{P}+1, Y_{P}\right) \quad \$
$$

Bresenham's Mid Point Criteria : Successive Updating (for selecting E)

Bresenham's Mid Point Criteria : Successive Updating (for selecting E)

$$
\begin{aligned}
& \begin{aligned}
d_{1} & =F\left(M_{1}\right) \\
& =F\left(X_{P}+1, Y_{P}-0.5\right) \\
& =\left(X_{P}+1\right)^{2}+\left(Y_{P}-0.5\right)^{2}-R^{2}
\end{aligned} \\
& \perp\left(X_{P}+1, Y_{P}\right) \quad E\left(X_{P}+2, Y_{P}\right) \\
& \text { If } d_{1}<0, E\left(X_{P}=X_{P}+1, Y_{P}\right) \\
& d_{2}=F\left(M_{2}\right) \\
& =F\left(X_{P}+2, Y_{P}-0.5\right) \\
& =\left(\mathrm{X}_{\mathrm{P}}+2\right)^{2}+\left(\mathrm{Y}_{\mathrm{P}}-0.5\right)^{2}-\mathrm{R}^{2} \\
& =X_{P}^{2}+4 X_{P}+4+\left(Y_{P}-0.5\right)^{2}-R^{2} \\
& =\mathrm{X}_{\mathrm{P}}^{2}+2 \mathrm{X}_{\mathrm{P}}+1+\left(\mathrm{Y}_{\mathrm{P}}-0.5\right)^{2}-\mathrm{R}^{2}+2 \mathrm{X}_{\mathrm{P}}+3 \\
& =d_{1}+\left(2 X_{P}+3\right)
\end{aligned}
$$

Similarly, If $\mathbf{d}_{\mathbf{2}}<\mathbf{0}, \mathrm{E}\left(\mathbf{X}_{\mathbf{P}}=\mathbf{X}_{\mathbf{P}} \mathbf{+ 1}, \mathbf{Y}_{\mathbf{P}}\right)$
Then $d_{3}=d_{2}+\left(2 X_{P}+3\right)$

Bresenham's Mid Point Criteria : Successive Updating (for selecting E)

Every iteration after selecting E, we can successively update our decision variable with-

$$
d_{\mathrm{NEW}}=d_{\mathrm{OLD}}+\left(2 X_{\mathrm{P}}+3\right)
$$

Bresenham's Mid Point Criteria : Successive Updating (for selecting SE)

$$
\begin{aligned}
d_{1} & =F\left(M_{1}\right) \\
& =F\left(X_{P}+1, Y_{P}-0.5\right) \\
& =\left(X_{P}+1\right)^{2}+\left(Y_{P}-0.5\right)^{2}-R^{2}
\end{aligned}
$$

Bresenham's Mid Point Criteria : Successive Updating (for selecting SE)

Bresenham's Mid Point Criteria : Successive Updating (for selecting SE)

$$
\begin{aligned}
& d_{1}=F\left(M_{1}\right) \\
& =F\left(X_{P}+1, Y_{P}-0.5\right) \\
& =\left(\mathrm{X}_{\mathrm{P}}+1\right)^{2}+\left(\mathrm{Y}_{\mathrm{P}}-0.5\right)^{2}-\mathrm{R}^{2} \\
& \text { If } d_{1}>=0, S E\left(X_{P}=X_{P}+1, Y_{P}-1\right) \\
& \mathrm{d}_{2}=\mathrm{F}\left(\mathrm{M}_{2}\right) \\
& =F\left(X_{P}+2, Y_{P}-1.5\right) \\
& =\left(\mathrm{X}_{\mathrm{P}}+2\right)^{2}+\left(\mathrm{Y}_{\mathrm{P}}-1.5\right)^{2}-\mathrm{R}^{2} \\
& =X_{P}^{2}+4 X_{P}+4+Y_{P}^{2}-3 Y_{P}+2.25-R^{2} \\
& =\mathrm{X}_{\mathrm{P}}{ }^{2}+2 \mathrm{X}_{\mathrm{P}}+1+\mathrm{Y}_{\mathrm{P}}{ }^{2}-1 \mathrm{Y}_{\mathrm{P}}+0.25-\mathrm{R}^{2}+ \\
& 2 X_{P}-2 Y_{P}+5 \\
& =\left(\mathrm{X}_{\mathrm{P}}^{2}+2 \mathrm{X}_{\mathrm{P}}+1\right)+\left(\mathrm{Y}_{\mathrm{P}}{ }^{2}-1 \mathrm{Y}_{\mathrm{P}}+0.5^{2}\right)-\mathrm{R}^{2} \\
& +2 X_{P}-2 Y_{P}+5 \\
& =d_{1}+\left(2 X_{P}-2 Y_{P}+5\right)
\end{aligned}
$$

Bresenham's Mid Point Criteria : Successive Updating (for selecting SE)

$$
\begin{aligned}
& d_{1}=F\left(M_{1}\right) \\
& =F\left(X_{P}+1, Y_{P}-0.5\right) \\
& =\left(X_{P}+1\right)^{2}+\left(Y_{P}-0.5\right)^{2}-R^{2} \\
& \text { If } d_{1}>=0, S E\left(X_{P}=X_{P}+1, Y_{P}-1\right) \\
& d_{2}=F\left(M_{2}\right) \\
& =F\left(X_{P}+2, Y_{P}-1.5\right) \\
& =\left(\mathrm{X}_{\mathrm{P}}+2\right)^{2}+\left(\mathrm{Y}_{\mathrm{P}}-1.5\right)^{2}-\mathrm{R}^{2} \\
& =\mathrm{X}_{\mathrm{P}}{ }^{2}+4 \mathrm{X}_{\mathrm{P}}+4+\mathrm{Y}_{\mathrm{P}}{ }^{2}-3 \mathrm{Y}_{\mathrm{P}}+2.25-\mathrm{R}^{2} \\
& =\mathrm{X}_{\mathrm{P}}{ }^{2}+2 \mathrm{X}_{\mathrm{P}}+1+\mathrm{Y}_{\mathrm{P}}{ }^{2}-1 \mathrm{Y}_{\mathrm{P}}+0.25-\mathrm{R}^{2}+ \\
& 2 X_{P}-2 Y_{P}+5 \\
& =\left(\mathrm{X}_{\mathrm{P}}^{2}+2 \mathrm{X}_{\mathrm{P}}+1\right)+\left(\mathrm{Y}_{\mathrm{P}}^{2}-1 \mathrm{Y}_{\mathrm{P}}+0.5^{2}\right)-\mathrm{R}^{2} \\
& +2 \mathrm{X}_{\mathrm{P}}-2 \mathrm{Y}_{\mathrm{P}}+5 \\
& =d_{1}+\left(2 X_{P}-2 Y_{P}+5\right) \\
& \text { Similarly, If } d_{2}>=0, S E\left(X_{P}=X_{P}+1, Y_{P}-1\right) \\
& \text { Then } d_{3}=d_{2}+\left(2 X_{P}-2 Y_{P}+5\right)
\end{aligned}
$$

Bresenham's Mid Point Criteria : Successive Updating (for selecting SE)

Every iteration after selecting SE, we can successively update our decision variable with-

$$
d_{\text {NEW }}=d_{O L D}+\left(2 X_{P}-2 Y_{P}+5\right)
$$

Bresenham's Mid Point Criteria : Successive Updating (summary)

If $\mathbf{d}<\mathbf{0}$, then midpoint M is inside the circle, E is closer to the circumference, So, \mathbf{E} is selected and do$\mathbf{d}=\mathbf{d}+\Delta \mathbf{E}$ Where, $\Delta \mathrm{E}=2 \mathrm{X}_{\mathrm{P}}+3$

If $\mathbf{d}>=\mathbf{0}$, then midpoint M is outside the circle, SE is closer to the circumference, So, $\mathbf{S E}$ is selected and do$\mathbf{d}=\mathbf{d}+\Delta \mathbf{S E}$
Where, $\Delta \mathrm{SE}=2 \mathrm{X}_{\mathrm{P}}-2 \mathrm{Y}_{\mathrm{P}}+5$

$$
\begin{aligned}
d_{\text {INIT }} & =F\left(M_{1}\right) \\
& =F(1, R-0.5) \\
& =(1)^{2}+(R-0.5)^{2}-R^{2} \\
& =1+R^{2}-R+0.25-R^{2} \\
& =1.25-R
\end{aligned}
$$

Initialization

```
We get, \(\mathbf{d}=1.25\) - R
```

Lets say, $\mathrm{h}=\mathrm{d}-0.25$

$$
\begin{aligned}
& =1.25-R-0.25 \\
h & =1-R
\end{aligned}
$$

' h ' is our new decision variable.
so -
' h ' is our new decision variable. SO -

Initialization

$$
\begin{aligned}
& \text { We get, } \begin{aligned}
\mathrm{d} & =1.25-\mathrm{R} \\
\text { Lets say, } \mathrm{h} & =\mathrm{d}-0.25 \\
& =1.25-\mathrm{R}-0.25 \\
\mathrm{~h} & =1-\mathrm{R}
\end{aligned}
\end{aligned}
$$

' h ' is our new decision variable.
so -

$$
\begin{array}{l|l}
\mathrm{d}=0 & \mathrm{~h}=-0.25 \\
\mathrm{~d}>0 & \mathrm{~h}>-0.25 \\
\mathrm{~d}<0 & \mathrm{~h}<-0.25
\end{array}
$$

For, new decision variable ' h ', it will be checked whether it is greater than or less than 0.25 , rather than 0

$$
\begin{aligned}
& \mathbf{h}_{\text {INIT }}=\mathbf{1}-\mathbf{R} \\
& \text { If } \mathbf{h}<-\mathbf{0 . 2 5} \text {, then } \mathbf{E} \text { is selected, } \mathbf{h}=\mathbf{h}+\Delta \mathbf{E} \\
& \text { If } \mathbf{h}>=\mathbf{- 0 . 2 5} \text {, then } \mathbf{S E} \text { is selected, } \mathbf{h}=\mathbf{h}+\Delta \mathbf{S E}
\end{aligned}
$$

Since \mathbf{h} starts out with an integer value and is incremented by integer value ($\Delta \mathrm{E}$ or $\Delta \mathrm{SE}$), we can change the comparison to just $\mathbf{~ < ~} \mathbf{0}$

Comparing h with 0

- 0.25 is the threshold.

Comparing h with 0

$$
\begin{aligned}
& \text { Let, } \mathrm{h}=-2 \text {, } \\
& \begin{aligned}
& \Delta=3 \\
& \mathrm{~h}=-2+\Delta \\
& \quad=-2+3 \\
&=1>-0.25
\end{aligned} \\
& \text { Select SE }
\end{aligned}
$$

- 0.25 is the threshold.

Comparing h with 0

Let, $\mathrm{h}=-2$,
$\Delta=3$

$$
h=-2+\Delta
$$

$$
=-2+3
$$

$$
=1>-0.25
$$

Select SE
Let, $\mathrm{h}=-2$,
$\Delta=1$
$h=-2+\Delta$
$=-2+1$
$=-1<-0.25$

Select E

Comparing h with 0

$$
\begin{aligned}
& \text { Let, } \mathrm{h}=-2 \text {, } \\
& \begin{aligned}
& \Delta=3 \\
& \mathrm{~h}=-2+\Delta \\
& \quad=-2+3
\end{aligned} \\
& \quad=1>-0.25 \\
& \text { Select } \mathrm{SE}
\end{aligned}
$$

Let, $\mathrm{h}=-2$,
$\Delta=1$
$h=-2+\Delta$
$=-2+1$
$=-1<-0.25$
Select E

Comparing h with 0

$$
\begin{aligned}
& \text { Let, } \mathrm{h}=-2, \\
& \begin{aligned}
& \Delta=3 \\
& \mathrm{~h}=-2+\Delta \\
&=-2+3 \\
&=1>0 \\
& \text { Select } S E
\end{aligned}
\end{aligned}
$$

Let, $h=-2$,
$\Delta=1$
$h=-2+\Delta$
$=-2+1$
$=-1<0$
Select E

Comparing h with 0

So, finally.....

$$
\mathbf{h}_{\mathrm{INIT}}=1-\mathrm{R}
$$

If $\mathbf{h}<\mathbf{0}$, then \mathbf{E} is selected, $\mathbf{h}=\mathbf{h}+\boldsymbol{\mathbf { E }}$
If $\mathbf{h}>=\mathbf{0}$, then $\mathbf{S E}$ is selected, $\mathbf{h}=\mathbf{h}+\boldsymbol{\Delta} \mathbf{S E}$

$$
\begin{array}{r}
\text { Where, } \Delta \mathrm{E}=2 \mathrm{X}_{\mathrm{P}}+3 \\
\Delta \mathrm{SE}=2 \mathrm{X}_{\mathrm{P}}-2 \mathrm{Y}_{\mathrm{P}}+5
\end{array}
$$

Algorithm

```
void MidpointCircle(int radius, int value)
{
    int }x=0
    int y = radius;
    int h=1 - radius;
    CirclePoints(x,y,value);
    while (y>x) {
    if (h<0) { /* Select E */
    h=h+2*\boldsymbol{x}+3;}
    else { /* Select SE */
    h=h+2* (x-y)+5;
    y=y-1;}
    x=x+1;
    CirclePoints(x,y);
    }
}
```


Algorithm

```
void MidpointCircle(int radius, int value)
{
    int }x=0
    int y = radius;
    int h=1 - radius;
    CirclePoints(x,y,value);
    while (y>x) {
    if (h<0){ /* Select E */
    h=h+2*\boldsymbol{x}+3;}
    else { /* Select SE */
    h=h+2* (x-y)+5;
    y=y-1;}
    x=x+1;
    CirclePoints(x,y);
    }
}
```

CirclePoints (x, y)
Plotpoint(x, y) ;
Plotpoint ($\mathrm{x},-\mathrm{y}$) ;
Plotpoint(-x,y) ;
Plotpoint $(-\mathrm{x},-\mathrm{y})$;
Plotpoint (y, x);
Plotpoint($\mathrm{y},-\mathrm{x}$) ;
Plotpoint $(-y, x)$;
Plotpoint $(-y,-x)$;
end

Example

Given:
Radius , $\mathrm{R}=10$

Example

Given:
Radius , $\mathrm{R}=10$
$(x, y)=(0,10)$
$h=1-R=-9$

Example

Given:
Radius , $\mathrm{R}=10$
(x, y) $=(\mathbf{0 , 1 0})$
$h=1-R=-9$

\mathbf{K}	$\mathbf{1}$						
$\mathbf{2 x}$	0						
$\mathbf{2 y}$	20						
\mathbf{h}							
$\mathbf{(x , y} \mathbf{y}$							

Example

Given:
Radius , $\mathrm{R}=10$
(x, y) $=(\mathbf{0 , 1 0})$
$h=1-R=-9$

\mathbf{K}	$\mathbf{1}$						
$\mathbf{2 x}$	0						
$\mathbf{2 y}$	20						
\mathbf{h}							
$\mathbf{(x , y} \mathbf{y}$	$\mathrm{E}(1,10)$						

$\mathrm{h}<=0, \mathrm{E}$

Example

Given:

Radius , $\mathrm{R}=10$
(x, y) $=(\mathbf{0 , 1 0})$
$h=1-R=-9$
$h=h+\Delta E=h+2 x+3$
$=-9+0+3$
$=-6$

\mathbf{K}	$\mathbf{1}$						
$\mathbf{2 x}$	0						
$\mathbf{2 y}$	20						
\mathbf{h}	-6						
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$						

Example

Given:
Radius , $\mathrm{R}=10$
(x, y) $=(\mathbf{0 , 1 0)}$
$h=1-R=-9$

\mathbf{K}	$\mathbf{1}$	$\mathbf{2}$					
$\mathbf{2 x}$	0	2					
$\mathbf{2 y}$	20	20					
\mathbf{h}	-6						
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$						

Example

Given:
Radius , $\mathrm{R}=10$
(x, y) $=(\mathbf{0 , 1 0})$
$h=1-R=-9$

\mathbf{K}	$\mathbf{1}$	$\mathbf{2}$					
$\mathbf{2 x}$	0	2					
$\mathbf{2 y}$	20	20					
\mathbf{h}	$\mathbf{y}-6$						
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$	$\mathrm{E}(2,10)$					
$\mathrm{h}<=0, \mathrm{E}$							

Example

Given:
Radius , $\mathrm{R}=10$
$\mathbf{(x , y)}=(\mathbf{0 , 1 0})$
$h=1-R=-9$
$h=h+\Delta E=h+2 x+3$
$=-6+2+3$
$=-1$

\mathbf{K}	$\mathbf{1}$	$\mathbf{2}$					
$\mathbf{2 x}$	0	2					
$\mathbf{2 y}$	20	20					
\mathbf{h}	-6	-1					
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$	$\mathrm{E}(2,10)$					

Example

Given:
Radius , $\mathrm{R}=10$
(x, y) $=(\mathbf{0 , 1 0)}$
$h=1-R=-9$

\mathbf{K}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$				
$\mathbf{2 x}$	0	2	4				
$\mathbf{2 y}$	20	20	20				
\mathbf{h}	-6	-1					
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$	$\mathrm{E}(2,10)$					

Example

Given:
Radius , $\mathrm{R}=10$
(x, y) $=(\mathbf{0 , 1 0)}$
$h=1-R=-9$

\mathbf{K}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$				
$\mathbf{2 x}$	0	2	4				
$\mathbf{2 y}$	20	20	20				
\mathbf{h}	-6	$\mathbf{y}_{\mathbf{2}}-1$					
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$	$\mathrm{E}(2,10)$	$\mathrm{E}(3,10)$				
$\mathrm{h}<=0, \mathrm{E}$							

Example

Given:
Radius , $\mathrm{R}=10$
(x, y) $=(\mathbf{0 , 1 0)}$
$h=1-R=-9$
$h=h+\Delta E=h+2 x+3$
$=-1+4+3$
$=6$

\mathbf{K}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$				
$\mathbf{2 x}$	0	2	4				
$\mathbf{2 y}$	20	20	20				
\mathbf{h}	-6	-1	6				
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$	$\mathrm{E}(2,10)$	$\mathrm{E}(3,10)$				

Example

Given:
Radius , $\mathrm{R}=10$
(x, y) $=(\mathbf{0 , 1 0)}$
$h=1-R=-9$

\mathbf{K}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$			
$\mathbf{2 x}$	0	2	4	6			
$\mathbf{2 y}$	20	20	20	20			
\mathbf{h}	-6	-1	$\mathbf{y} 6$				
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$	$\mathrm{E}(2,10)$	$\mathrm{E}(3,10)$	$\mathrm{S}(4,9)$			
$\mathrm{h}>0, \mathrm{SE}$							

Example

Given:
Radius , $\mathrm{R}=10$
(x, y) $=(\mathbf{0 , 1 0})$
$h=1-R=-9$
$h=h+\Delta S E=h+2 x-2 y+5$
$=6+6-20+5$
$=-3$

\mathbf{K}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$			
$\mathbf{2 x}$	0	2	4	6			
$\mathbf{2 y}$	20	20	20	20			
\mathbf{h}	-6	-1	6	-3			
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$	$\mathrm{E}(2,10)$	$\mathrm{E}(3,10)$	$\mathrm{S}(4,9)$			

Example

Given:
Radius , $\mathrm{R}=10$
(x, y) $=(\mathbf{0 , 1 0})$
$h=1-R=-9$

\mathbf{K}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{2 x}$	0	2	4	6	8	10	12
$\mathbf{2 y}$	20	20	20	20	18	18	16
\mathbf{h}	-6	-1	6	-3	8	5	6
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$	$\mathrm{E}(2,10)$	$\mathrm{E}(3,10)$	$\mathrm{S}(4,9)$	$\mathrm{E}(5,9)$	$\mathrm{S}(6,8)$	$\mathrm{S}(7,7)$

Example

Given:

Radius , $\mathrm{R}=10$
(x, y) $=(\mathbf{0 , 1 0})$
$h=1-R=-9$

Untill $\mathbf{y}>\mathbf{x}$

\mathbf{K}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{2 x}$	0	2	4	6	8	10	12
$\mathbf{2 y}$	20	20	20	20	18	18	16
\mathbf{h}	-6	-1	6	-3	8	5	6
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$	$\mathrm{E}(2,10)$	$\mathrm{E}(3,10)$	$\mathrm{S}(4,9)$	$\mathrm{E}(5,9)$	$\mathrm{S}(6,8)$	$\mathrm{S}(7,7)$

