Scan Converting Lines

Bresenham's Line Drawing Algorithm

- Mohammad Imrul Jubair

The Scenario

Given,
Start point (X0, Y0)
End point (X1, Y1)

Assumption: (Only the $1^{\text {st }}$ Octant for this time)

Given,
Start point (X0, Y0)
End point (X1, Y1)

Bresenham's Mid Point Criteria: How it works

Bresenham's Mid Point Criteria: How it works

Next pixel is chosen (from E or NE) to build the line successively

Next pixel is chosen (from E or NE) to build the line successively

Next pixel is chosen (from E or NE) to build the line successively

Next pixel is chosen (from E or NE) to build the line successively

Next pixel is chosen (from E or NE) to build the line successively

Next pixel is chosen (from E or NE) to build the line successively

Bresenham's Mid Point Criteria: How it works

Bresenham's Mid Point Criteria: How it works

A Line is defined by a function $F(X, Y)$

$$
\begin{aligned}
& Y=m X+B \\
& \text { or, } Y=\frac{d y}{d x} * X+B \\
& \text { or, } Y d x=X d y+B d x \\
& \text { or, } X d y-Y d x+B d x=0 \\
& \text { or, } a X+b Y+c=0[\text { here }, a=d y, b=-d x, c=B d x] \\
& F(X, Y)=a X+b Y+c=0
\end{aligned}
$$

A Line is defined by a function $F(X, Y)$

$$
\begin{aligned}
& Y=m X+B \\
& \text { or, } Y=\frac{d y}{d x} * X+B \\
& \text { or, } Y d x=X d y+B d x \\
& \text { or, } X d y-Y d x+B d x=0 \\
& \text { or, } a X+b Y+c=0 \quad[\text { here }, a=d y, b=-d x, c=B d x] \\
& F(X, Y)=a X+b Y+c=0
\end{aligned}
$$

$$
\text { For every point }(X, Y) \text { on the }
$$ line the function is Zero

A Line is defined by a function $\mathrm{F}(\mathrm{X}, \mathrm{Y})$

A Line is defined by a function $\mathrm{F}(\mathrm{X}, \mathrm{Y})$

A Line is defined by a function $F(X, Y)$

A Line is defined by a function $F(X, Y)$

A Line is defined by a function $F(X, Y)$

Bresenham's Mid Point Criteria: The Logic

Selecting E or NE depends on closeness to the line.
If E is closer to line, then E is selected If NE is closer, then NE is selected

Bresenham's Mid Point Criteria: The Logic

To determine the nearness, mid point between E and NE is used

Bresenham's Mid Point Criteria: The Logic

If M is above the line, then E is closer to the line
$\rightarrow \mathbf{E}$ is selected

Bresenham's Mid Point Criteria: The Logic

If M is above the line, then E is closer to the line
$\rightarrow \mathbf{E}$ is selected
If M is below the line, then NE is closer to the line
$\rightarrow \mathrm{NE}$ is selected

Bresenham's Mid Point Criteria: The Logic

Now, we have to evaluate whether the mid point is below or above the line

If M is above the line, then E is closer to the line
$\rightarrow \mathbf{E}$ is selected
If M is below the line, then NE is closer to the line $\rightarrow \mathrm{NE}$ is selected

Bresenham's Mid Point Criteria

We know, $\mathrm{F}(\mathrm{X}, \mathrm{Y})=\mathrm{aX}+\mathrm{bY}+\mathrm{c}$
Lets put the mid point $\mathbf{M ' s}^{\prime}$ coordinate in function $F(X, Y)$

$$
\mathrm{F}(\mathrm{M})=\mathrm{F}\left(\mathbf{X}_{\mathrm{P}}+\mathbf{1}, \mathrm{Y}_{\mathrm{P}}+\mathbf{0 . 5}\right)=\mathrm{a}\left(\mathrm{X}_{\mathrm{P}}+1\right)+\mathrm{b}\left(\mathrm{Y}_{\mathrm{P}}+0.5\right)+\mathrm{c}
$$

Bresenham's Mid Point Criteria

We know, $F(X, Y)=a X+b Y+c$
Lets put the mid point $\mathbf{M ' s}^{\prime}$ coordinate in function $F(X, Y)$

$$
\mathrm{F}(\mathrm{M})=\mathrm{F}\left(\mathbf{X}_{\mathrm{P}}+\mathbf{1}, \mathrm{Y}_{\mathrm{P}}+\mathbf{0 . 5}\right)=\mathrm{a}\left(\mathrm{X}_{\mathrm{P}}+1\right)+\mathrm{b}\left(\mathrm{Y}_{\mathrm{P}}+0.5\right)+\mathrm{c}
$$

 So, $\mathbf{d}=\mathbf{F}(\mathbf{M})$
d is called 'decision variable’

Bresenham's Mid Point Criteria

$$
\text { So, } \begin{aligned}
\mathrm{d} & =\mathrm{F}(\mathrm{M}) \\
& =F\left(\mathrm{X}_{\mathrm{P}}+1, \mathrm{Y}_{\mathrm{P}}+0.5\right) \\
& =\mathrm{a}\left(\mathrm{X}_{\mathrm{P}}+1\right)+\mathrm{b}\left(\mathrm{Y}_{\mathrm{P}}+0.5\right)+\mathrm{c}
\end{aligned}
$$

if $\mathbf{d}=\mathbf{0}$, then midpoint is on the line

Bresenham's Mid Point Criteria

$$
\text { So, } \begin{aligned}
\mathrm{d} & =\mathrm{F}(\mathrm{M}) \\
& =\mathrm{F}\left(\mathrm{X}_{\mathrm{P}}+1, \mathrm{Y}_{\mathrm{P}}+0.5\right) \\
& =\mathrm{a}\left(\mathrm{X}_{\mathrm{P}}+1\right)+\mathrm{b}\left(\mathrm{Y}_{\mathrm{P}}+0.5\right)+\mathrm{c}
\end{aligned}
$$

if $\mathbf{d}=\mathbf{0}$, then midpoint M is on the line

If $\mathbf{d}>\mathbf{0}$, then midpoint M is below the line

Bresenham's Mid Point Criteria

$$
\text { So, } \begin{aligned}
\mathrm{d} & =\mathrm{F}(\mathrm{M}) \\
& =\mathrm{F}\left(\mathrm{X}_{\mathrm{P}}+1, \mathrm{Y}_{\mathrm{P}}+0.5\right) \\
& =\mathrm{a}\left(\mathrm{X}_{\mathrm{P}}+1\right)+\mathrm{b}\left(\mathrm{Y}_{\mathrm{P}}+0.5\right)+\mathrm{c}
\end{aligned}
$$

if $\mathbf{d}=\mathbf{0}$, then midpoint M is on the line

If $\mathbf{d}>\mathbf{0}$, then midpoint M is below the line

If $\mathbf{d}<\mathbf{0}$, then midpoint M is above the line

Bresenham's Mid Point Criteria

$$
\text { So, } \begin{aligned}
\mathrm{d} & =\mathrm{F}(\mathrm{M}) \\
& =\mathrm{F}\left(\mathrm{X}_{\mathrm{P}}+1, \mathrm{Y}_{\mathrm{P}}+0.5\right) \\
& =\mathrm{a}\left(\mathrm{X}_{\mathrm{P}}+1\right)+\mathrm{b}\left(\mathrm{Y}_{\mathrm{P}}+0.5\right)+\mathrm{c}
\end{aligned}
$$

As we must select E or NE:

If $\mathbf{d}>\mathbf{0}$, then midpoint M is below the line

If $\mathbf{d} \leq \mathbf{0}$, then midpoint M is above the line

Bresenham's Mid Point Criteria : Summary

If $\mathbf{d} \leq \mathbf{0}$, then midpoint M is above the line, and E is closer to line, So, \mathbf{E} is selected

If $\mathbf{d}>\mathbf{0}$, then midpoint M is below the line, and NE is closer to line,
So, NE is selected

Bresenham's Mid Point Criteria : Successive Updating (for selecting E)

$$
\begin{aligned}
d_{1} & =F\left(M_{1}\right) \\
& =F\left(X_{P}+1, Y_{P}+0.5\right) \\
& =a\left(X_{P}+1\right)+b\left(Y_{P}+0.5\right)+c
\end{aligned}
$$

Bresenham's Mid Point Criteria : Successive Updating (for selecting E)

$$
\begin{aligned}
d_{1} & =F\left(M_{1}\right) \\
& =F\left(X_{P}+1, Y_{P}+0.5\right) \\
& =a\left(X_{P}+1\right)+b\left(Y_{P}+0.5\right)+c
\end{aligned}
$$

$$
\text { IF } d_{1} \leq 0, \text { select } E\left(X_{P}=X_{P}+1, Y_{P}\right)
$$

Bresenham's Mid Point Criteria : Successive Updating (for selecting E)

$$
\begin{aligned}
d_{1} & =F\left(M_{1}\right) \\
& =F\left(X_{P}+1, Y_{P}+0.5\right) \\
& =a\left(X_{P}+1\right)+b\left(Y_{P}+0.5\right)+c
\end{aligned}
$$

$$
\text { IF } d_{1} \leq 0, \operatorname{select} E\left(X_{P}=X_{P}+1, Y_{P}\right)
$$

$$
\mathbf{d}_{2}=F\left(M_{2}\right)
$$

Bresenham's Mid Point Criteria : Successive Updating (for selecting E)

Bresenham's Mid Point Criteria : Successive Updating (for selecting E)

$$
\begin{aligned}
d_{1} & =F\left(M_{1}\right) \\
& =F\left(X_{P}+1, Y_{P}+0.5\right) \\
& =a\left(X_{P}+1\right)+b\left(Y_{P}+0.5\right)+c
\end{aligned}
$$

$$
\text { IF } d_{1} \leq 0, \text { select } E\left(X_{P}=X_{P}+1, Y_{P}\right)
$$

$$
\mathbf{d}_{2}=\mathrm{F}\left(\mathrm{M}_{2}\right)
$$

$$
=F\left(X_{P}+2, Y_{P}+0.5\right)
$$

$$
=a\left(X_{P}+2\right)+b\left(Y_{P}+0.5\right)+c
$$

$$
=a X_{P}+2 a+b Y_{P}+0.5 b+c
$$

$$
=a X_{P}+a+b Y_{P}+0.5 b+c+a
$$

$$
=\left[a\left(X_{P}+1\right)+b\left(Y_{P}+0.5\right)+c\right]+a
$$

$$
=d_{1}+\mathbf{a}
$$

Bresenham's Mid Point Criteria : Successive Updating (for selecting E)

$$
\begin{aligned}
& d_{1}=F\left(M_{1}\right) \\
& =F\left(X_{P}+1, Y_{P}+0.5\right) \\
& =\mathrm{a}\left(\mathrm{X}_{\mathrm{P}}+1\right)+\mathrm{b}\left(\mathrm{Y}_{\mathrm{P}}+0.5\right)+\mathrm{c} \\
& \text { IF } \mathrm{d}_{1} \leq 0 \text {, select } E\left(X_{P}=X_{P}+1, Y_{P}\right) \\
& d_{2}=F\left(M_{2}\right) \\
& =F\left(X_{P}+2, Y_{P}+0.5\right) \\
& =a\left(X_{P}+2\right)+b\left(Y_{P}+0.5\right)+c \\
& =a X_{P}+2 a+b Y_{P}+0.5 b+c \\
& =a X_{P}+a+b Y_{P}+0.5 b+c+a \\
& =\left[a\left(X_{P}+1\right)+b\left(Y_{P}+0.5\right)+c\right]+a \\
& =d_{1}+\mathrm{a} \\
& \text { IF } \mathrm{d}_{2} \leq 0, \text { select } E\left(X_{P}=X_{P}+1, Y_{P}\right)
\end{aligned}
$$

Bresenham's Mid Point Criteria : Successive Updating (for selecting E)

$$
\begin{aligned}
d_{1} & =F\left(M_{1}\right) \\
& =F\left(X_{P}+1, Y_{P}+0.5\right) \\
& =a\left(X_{P}+1\right)+b\left(Y_{P}+0.5\right)+c
\end{aligned}
$$

$$
\text { IF } d_{1} \leq 0[\text { select } E]
$$

$$
\mathbf{d}_{2}=F\left(M_{2}\right)
$$

$$
=F\left(X_{P}+2, Y_{P}+0.5\right)
$$

$$
=\mathrm{a}\left(\mathrm{X}_{\mathrm{P}}+2\right)+\mathrm{b}\left(\mathrm{Y}_{\mathrm{P}}+0.5\right)+\mathrm{c}
$$

$$
=a X_{P}+2 a+b Y_{P}+0.5 b+c
$$

$$
=a X_{P}+a+b Y_{P}+0.5 b+c+a
$$

$$
=\left[\mathrm{a}\left(\mathrm{X}_{\mathrm{P}}+1\right)+\mathrm{b}\left(\mathrm{Y}_{\mathrm{P}}+0.5\right)+\mathrm{c}\right]+\mathrm{a}
$$

$$
=d_{1}+a
$$

IF $\mathrm{d}_{2} \leq 0$, select $E\left(X_{P}=X_{P}+1, Y_{P}\right)$
Similarly, $\mathrm{d}_{3}=\mathrm{F}\left(\mathrm{M}_{3}\right)=\mathrm{d}_{\mathbf{2}}+\mathrm{a}$

Bresenham's Mid Point Criteria : Successive Updating (for selecting E)

Every iteration after selecting E, we can successively update our decision variable with-
$d_{\text {NEW }}=d_{\text {OLD }}+a$
$=d_{\text {OLD }}+d y$

Bresenham's Mid Point Criteria : Successive Updating (for selecting NE)

$$
\begin{aligned}
d_{1} & =F\left(M_{1}\right) \\
& =F\left(X_{P}+1, Y_{P}+0.5\right) \\
& =a\left(X_{P}+1\right)+b\left(Y_{P}+0.5\right)+c
\end{aligned}
$$

Bresenham's Mid Point Criteria : Successive Updating (for selecting NE)

$$
\begin{aligned}
\mathrm{d}_{1} & =\mathrm{F}\left(\mathrm{M}_{1}\right) \\
& =\mathrm{F}\left(\mathrm{X}_{\mathrm{P}}+1, \mathrm{Y}_{\mathrm{P}}+0.5\right) \\
& =\mathrm{a}\left(\mathrm{X}_{\mathrm{P}}+1\right)+\mathrm{b}\left(\mathrm{Y}_{\mathrm{P}}+0.5\right)+\mathrm{c} \\
\text { IF } & \mathrm{d}_{1}
\end{aligned}>0 \text {, select } N E\left(X_{P}=X_{P}+1, Y_{P}=Y_{P}+1\right) .
$$

Bresenham's Mid Point Criteria : Successive Updating (for selecting NE)

$$
\begin{aligned}
& \mathrm{d}_{1}=\mathrm{F}\left(\mathrm{M}_{1}\right) \\
&=\mathrm{F}\left(\mathrm{X}_{\mathrm{P}}+1, \mathrm{Y}_{\mathrm{P}}+0.5\right) \\
&=\mathrm{a}\left(\mathrm{X}_{\mathrm{P}}+1\right)+\mathrm{b}\left(\mathrm{Y}_{\mathrm{P}}+0.5\right)+\mathrm{c} \\
& \text { IF } \mathrm{d}_{1}>0, \text { select } N E\left(X_{P}=X_{P}+1, Y_{P}=Y_{P}+1\right)
\end{aligned}
$$

Bresenham's Mid Point Criteria : Successive Updating (for selecting NE)

Bresenham's Mid Point Criteria : Successive Updating (for selecting NE)

$$
\begin{aligned}
d_{1} & =F\left(M_{1}\right) \\
& =F\left(X_{P}+1, Y_{P}+0.5\right) \\
& =\mathrm{a}\left(\mathrm{X}_{\mathrm{P}}+1\right)+\mathrm{b}\left(\mathrm{Y}_{\mathrm{P}}+0.5\right)+\mathrm{c} \\
\text { IF } & d_{1}>0, \text { select } N E\left(X_{P}=X_{P}+1, Y_{P}=Y_{P}+1\right) \\
d_{2}= & F\left(M_{2}\right) \\
= & F\left(X_{P}+2, Y_{P}+1.5\right) \\
= & a\left(X_{P}+2\right)+b\left(Y_{P}+1.5\right)+c \\
= & a X_{P}+2 a+b Y_{P}+1.5 b+c \\
= & a X_{P}+a+b Y_{P}+0.5 b+c+a+b \\
= & {\left[a\left(X_{P}+1\right)+b\left(Y_{P}+0.5\right)+c\right]+a+b } \\
= & d_{1}+(a+b)
\end{aligned}
$$

Bresenham's Mid Point Criteria : Successive Updating (for selecting NE)

$$
\begin{aligned}
& \text { (}
\end{aligned}
$$

Bresenham's Mid Point Criteria : Successive Updating (for selecting NE)

$$
\begin{aligned}
d_{1} & =F\left(M_{1}\right) \\
& =F\left(X_{P}+1, Y_{P}+0.5\right) \\
& =\mathrm{a}\left(\mathrm{X}_{\mathrm{P}}+1\right)+\mathrm{b}\left(\mathrm{Y}_{\mathrm{P}}+0.5\right)+\mathrm{c} \\
\text { IF } & d_{1}>0, \text { select } N E\left(X_{P}=X_{P}+1, Y_{P}=Y_{P}+1\right) \\
d_{2}= & F\left(M_{2}\right) \\
= & F\left(X_{P}+2, Y_{P}+1.5\right) \\
= & a\left(X_{P}+2\right)+b\left(Y_{P}+1.5\right)+c \\
= & a X_{P}+2 a+b Y_{P}+1.5 b+c \\
= & a X_{P}+a+b Y_{P}+0.5 b+c+a+b \\
= & {\left[a\left(X_{P}+1\right)+b\left(Y_{P}+0.5\right)+c\right]+a+b } \\
= & d_{1}+(a+b)
\end{aligned}
$$

IF d $2>0$, select $N E\left(X_{P}=X_{P}+1, Y_{P}=Y_{P}+1\right)$
Similarly, $d_{3}=F\left(M_{3}\right)=d_{2}+(a+b)$

Bresenham's Mid Point Criteria : Successive Updating (for selecting NE)

Every iteration after selecting NE, we can successively update our decision variable with-

$$
\begin{aligned}
\mathbf{d}_{\mathrm{NEW}} & =\mathbf{d}_{\mathrm{OLD}}+(\mathbf{a}+\mathbf{b}) \\
& =d_{\mathrm{OLD}}+(\mathrm{dy}-\mathbf{d x})
\end{aligned}
$$

Bresenham's Mid Point Criteria : Successive Updating (Summary)

If $\mathbf{d} \leq \mathbf{0}$, then midpoint M is above the line, and E is closer to line, So, \mathbf{E} is selected
And, do-
$\mathbf{d}=\mathbf{d}+\Delta E$
Where, $\Delta \mathrm{E}=\mathrm{dy}$

If $\mathbf{d}>\mathbf{0}$, then midpoint M is
below the line, and NE is closer to line,
So, NE is selected
And, do-
$\mathbf{d}=\mathbf{d}+\Delta \mathrm{NE}$
Where, $\Delta \mathrm{E}=\mathrm{dy}$ - dx

```
while ( \(\mathrm{x}<=\mathrm{x} 1\) )
    if d <=0 /* Choose E */
        \(\mathrm{x}=\mathrm{x}+1\)
        \(d=d+\Delta E ;\)
    else /*Choose NE */
        \(\mathrm{x}=\mathrm{x}+1\)
        \(y=y+1\)
        \(d=d+\Delta N E\)
Endif PlotPoint( \(\mathrm{x}, \mathrm{y}\) )
end while
```


Bresenham's Mid Point Algorithm

Modified

while ($\mathrm{x}<=\mathrm{x} 1$)
if d <=0 /* Choose E */

$$
\begin{aligned}
& x=x+1 \\
& d=d+\Delta E
\end{aligned}
$$

else /* Choose NE */

$$
\begin{aligned}
& x=x+1 \\
& y=y+1 \\
& d=d+\Delta N E
\end{aligned}
$$

Endif
PlotPoint(x, y)
end while
while ($\mathrm{x}<=\mathrm{x} 1$)
if $\mathrm{d}<=0 /{ }^{*}$ Choose $E^{*} /$

$$
\mathrm{d}=\mathrm{d}+\Delta \mathrm{E}
$$

else /*Choose NE */

$$
\begin{aligned}
& y=y+1 \\
& d=d+\Delta N E
\end{aligned}
$$

Endif
$\mathrm{x}=\mathrm{x}+1$
PlotPoint(x, y)
end while

Bresenham's Mid Point Algorithm

This \boldsymbol{d} must be initialized to start the successive operation
while ($\mathrm{x}<=\mathrm{x} 1$)
if d <=0 $/ *$ Choose $E^{*} /$

$$
\begin{aligned}
& x=x+1 \\
& d=d+\Delta E
\end{aligned}
$$

else /* Choose NE */

$$
\begin{aligned}
& x=x+1 \\
& y=y+1 \\
& d=d+\Delta N E
\end{aligned}
$$

Endif
PlotPoint(x, y)
end while
while $(x<=x 1)$

$$
\frac{\mathrm{d}<=0}{\mathrm{~d}=\mathrm{d}+\Delta \mathrm{E}} \text { * Choose } E * /
$$

else /*Choose NE */

$$
\begin{aligned}
& y=y+1 \\
& d=d+\Delta N E
\end{aligned}
$$

Endif
$\mathrm{x}=\mathrm{x}+1$
PlotPoint(x, y)
end while

Bresenham's Mid Point Algorithm: Initializing Decision Variable

$$
\begin{aligned}
& d_{\text {INIT }}=F(M) \\
& =F\left(X_{0}+1, Y_{0}+0.5\right) \\
& =a\left(X_{0}+1\right)+b\left(Y_{0}+0.5\right)+c \\
& =a X_{0}+a+b Y_{0}+0.5 b+c \\
& =a X_{0}+b Y_{0}+c+a+0.5 b \\
& =\left(a X_{0}+b Y_{0}+c\right)+a+0.5 b \\
& =F\left(X_{0}, Y_{0}\right)+a+0.5 b \\
& =\mathrm{a}+0.5 \mathrm{~b} \\
& =d y-0.5 d x
\end{aligned}
$$

Bresenham's Mid Point Algorithm: Initializing Decision Variable

Still there is floating point. floating point operation is slower than integer operation

Bresenham's Mid Point Algorithm: Initialization

$$
\begin{aligned}
& \rightarrow \mathrm{d}_{\mathrm{INIT}}=\mathrm{dy}-0.5 \mathrm{dx} \\
& \quad=2 \mathrm{dy}-\mathrm{dx} \\
& \\
& \rightarrow \Delta \mathrm{E}=2 \mathrm{dy} \\
& \rightarrow \Delta \mathrm{NE}=2(\mathrm{dy}-\mathrm{dx})
\end{aligned}
$$

$\mathbf{2}$ is multiplied with $\mathbf{d}_{\text {INIT }}$ to remove the floating point. Observe that, ΔE and $\Delta N E$ also multiplied by 2 as those two will be added with $\mathbf{d}_{\text {INIT }}$ depending on condition. The sign of the decision variable d is needed to select E or NE pixel. (+ve / -ve) Value is influencing the decision here.

Bresenham's Mid Point Algorithm

Given:

Start point ($\mathrm{x} 0, \mathrm{y} 0$) End point (x1, y1)

Initialization:

$\mathrm{x}=\mathrm{x} 0, \mathrm{y}=\mathrm{y} 0$
$d x=x 1-x 0, d y=y 1-y 0$
$\mathrm{d}=2 \mathrm{dy}-\mathrm{dx}$
$\Delta \mathrm{E}=2 \mathrm{dy}$
$\Delta N E=2(d y-d x)$
PlotPoint(x, y)

Loop:

while ($\mathrm{x}<=\mathrm{x} 1$)
if d <=0 /* Choose E */

$$
d=d+\Delta E
$$

else /*Choose NE */

$$
\begin{aligned}
& y=y+1 \\
& d=d+\Delta N E
\end{aligned}
$$

Endif
$\mathrm{x}=\mathrm{x}+1$
PlotPoint(x, y)
end while

Bresenham's Mid Point Algorithm : Example

Given:

Start point $(5,8)$ End point $(9,11)$

Bresenham's Mid Point Algorithm : Example

Bresenham's Mid Point Algorithm : Example

Start point $(5,8)$ End point $(9,11)$

$$
\begin{aligned}
& d y=3, d x=4 \\
& d=2 d y-d x=2 \\
& \Delta E=2 d y=6 \\
& \Delta N E=2(d y-d x)=-2
\end{aligned}
$$

$$
d=2
$$

d	$\mathbf{2}$			
(X, Y)				

Bresenham's Mid Point Algorithm : Example

\mathbf{d}	$\mathbf{2}$			
(X, Y)	NE $(6,9)$			

$\mathrm{d}>0, \mathrm{NE}$

Bresenham's Mid Point Algorithm : Example

Start point $(5,8)$ End point $(9,11)$

$$
\begin{aligned}
& d y=3, d x=4 \\
& d=2 d y-d x=2 \\
& \Delta E=2 d y=6 \\
& \Delta N E=2(d y-d x)=-2
\end{aligned}
$$

$\mathrm{d}=2+\Delta \mathrm{NE}$

\mathbf{d}	$\mathbf{2}$	$\mathbf{0}$		
(X, Y)	$\operatorname{NE}(6,9)$			

Bresenham's Mid Point Algorithm : Example

\mathbf{d}	$\mathbf{2}$	$\mathbf{0}$		
(X, Y)	$N E(6,9)$	$E(7,9)$		
$d<=0, E$				

Bresenham's Mid Point Algorithm : Example

Bresenham's Mid Point Algorithm : Example

\mathbf{d}	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{6}$	
(X, Y)	NE $(6,9)$	$E(7,9)$	NE $(8,10)$	
$d>0, N E$				

Bresenham's Mid Point Algorithm : Example

Bresenham's Mid Point Algorithm : Example

\mathbf{d}	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{6}$	$\mathbf{4}$
(X, Y)	NE $(6,9)$	E $(7,9)$	NE $(8,10)$	NE $(9,11)$

Bresenham's Mid Point Algorithm : Example

Start point $(5,8)$ End point $(9,11)$

$$
\begin{aligned}
& d y=3, d x=4 \\
& d=2 d y-d x=2 \\
& \Delta E=2 d y=6 \\
& \Delta N E=2(d y-d x)=-2
\end{aligned}
$$

\mathbf{d}	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{6}$	$\mathbf{4}$
(X, Y)	NE $(6,9)$	$E(7,9)$	NE $(8,10)$	NE $(9,11)$

