CSE 4125: Distributed Database Systems Chapter – 3

Levels of Distributed Transparency. (part – B)

Outline

- Types of fragmentation.
- Rules of fragmentation.

Types of Fragmentation

- 1. Horizontal fragmentation.
- 2. Vertical fragmentation.
- 3. Mixed fragmentation.

Determining Fragmentation*

The following information is used to decide fragmentation:

- Quantitative information:
 - frequency of queries, site, where query is run, selectivity (i.e. probability of accessing) of the queries, etc.
- Qualitative information:

- types of access of data, read/write, etc.

Rules of Fragmentation

- Completeness:
 - All data in global relation must be mapped into fragments.
 - No data must be left unmapped.
- Reconstruction:
 - It must be possible to obtain the global relation from its fragments.

Rules of Fragmentation (cont.)

- Disjointness:
 - It is convenient to have disjoint (non-overlapping) fragments.
 - Not strict, can be violated.

Horizontal Fragmentation

- Partitioning the tuples of a global relation into subsets.
- Example: global relation: *SUPPLIER (SNUM, NAME, CITY)*

Apply horizontal fragmentation based on city.

Question: what relational algebraic operation can be applied?

Horizontal Fragmentation (cont.)

• Global schema:

SUPPLIER (SNUM, NAME, CITY)

- Fragmentation Schema:
 - $SUPPLIER_1 = SL_{CITY} = 'DHK' SUPPLIER$
 - $SUPPLIER_2 = SL_{CITY} = 'CTG' SUPPLIER$
- *Qualification:* Predicate which is used in the selection operation that defines a fragment.

Horizontal Fragmentation (cont.)

- From previous example, discuss
 - Is it complete?
 - How to reconstruct?
 - Perfect reconstruction possible ?
 - Is it disjoint?

Derived Horizontal Fragmentation

- In some cases, horizontal fragmentation cannot be based on its own attributes.
 - Needs to be derived from the horizontal fragmentation of another relation.

• Example: global relations: *SUPPLIER (SNUM, NAME, CITY) SUPPLY (SNUM, PNUM, DEPTNUM, QUAN)*

Partition *SUPPLY* based on a cities.

Question: What is the relational algebraic formula to apply this?

• Global relations:

SUPPLIER (SNUM, NAME, CITY) SUPPLY (SNUM, PNUM, DEPTNUM, QUAN)

Fragmentation Schema (method-1):

Firstly,

 $SUPPLIER_{1} = SL_{CITY} = 'DHK' SUPPLIER$ $SUPPLIER_{2} = SL_{CITY} = 'CTG' SUPPLIER$

Finally,

$$SUPPLY_1 = SUPPLY SJ_{SNUM} = SNUM SUPPLIER_1$$

 $SUPPLY_2 = SUPPLY SJ_{SNUM} = SNUM SUPPLIER_2$

• Global relations:

SUPPLIER (SNUM, NAME, CITY) SUPPLY (SNUM, PNUM, DEPTNUM, QUAN)

 Fragmentation Schema (method-2): SUPPLY₁ = SUPPLY SJ q1 SUPPLIER SUPPLY₂ = SUPPLY SJ q2 SUPPLIER

Where,

q1: SUPPLY.SNUM = SUPPLIER.SNUM and SUPPLIER.CITY = 'DHK'
q2: SUPPLY.SNUM = SUPPLIER.SNUM and SUPPLIER.CITY = 'CTG'

- From previous examples, discuss
 - Is it complete?
 - In which cases it will be complete?
 - In which cases it will NOT be complete?
 - How to reconstruct?
 - Perfect reconstruction possible?
 - Is it disjoint?

Vertical Fragmentation

- Partitioning the attributes of a global relation into subsets.
- Example: global relation: *EMP (EMPNUM, NAME, SAL, TAX, MGRNUM, DEPTNUM*)

Apply vertical fragmentation.

Question: what relational algebraic operation can be applied?

Vertical Fragmentation (cont.)

• Global schema:

EMP (EMPNUM, NAME, SAL, TAX, MGRNUM, DEPTNUM)

• Fragmentation schema:

 $EMP_{1} = PJ_{EMPNUM, NAME, MGRNUM, DEPTNUM} EMP$ $EMP_{2} = PJ_{SAL, TAX} EMP$

Question: do you think the fragmentation is acceptable?

Vertical Fragmentation (cont.)

• Global schema:

EMP (EMPNUM, NAME, SAL, TAX, MGRNUM, DEPTNUM)

• Fragmentation schema:

 $EMP_{1} = PJ_{EMPNUM, NAME, MGRNUM, DEPTNUM} EMP$ $EMP_{2} = PJ_{EMPNUM, SAL, TAX} EMP$

Vertical Fragmentation (cont.)

- From previous example, discuss
 - Is it complete?
 - How to reconstruct?
 - Perfect reconstruction possible ?
 - Is it disjoint?

Mixed Fragmentation

- Horizontal + Vertical.
- Can be applied recursively.
- Represented by *Fragmentation tree*.

Mixed Fragmentation (cont.)

Global Schema:

EMP (EMPNUM, NAME, SAL, TAX, MGRNUM, DEPTNUM)

Fragmentation schema:

 $EMP_{1} = SL_{DEPTNUM \leq 10} PJ_{EMPNUM, NAME, MGRNUM, DEPTNUM} (EMP)$ $EMP_{2} = SL_{DEPTNUM > 10} PJ_{EMPNUM, NAME, MGRNUM, DEPTNUM} (EMP)$ $EMP_{3} = PJ_{EMPNUM, NAME, SAL, TAX} (EMP)$

Fragmentation tree:

Mixed Fragmentation (cont.)

- From previous example, discuss
 - How to determine completeness?
 - How to reconstruct?
 - Perfect reconstruction possible?
 - Disjointness.

Degree of Fragmentation*

The degree of fragmentation lies between two extreme situations –

- 1. Not to fragment at all.
- 2. Fragment to the level of individual tuples (in the case of horizontal fragmentation) or to the level of individual attributes (in the case of vertical fragmentation).

Practice Problems/ Questions

- a) Draw the fragmentation tree for the fragmentation schema presented in the text book figure 3.4 (page 46).
- b) Write the reconstruction formula for the fragmentation schema presented in the text book figure 3.9a (page - 56).
- c) Text book:

Exercise: 3.1