CSE4203: Computer Graphics
 Chapter - 8 (part - B)
 Graphics Pipeline

Mohammad Imrul Jubair

Outline

- Bresenham's Circle Drawing Algorithm

We have to develop an algorithmthat generates thiscircumference

Assumptions

The first pixel of the circumference is plotted on ($0, R$)
Given,
Radius R

The first pixel of the circumference is plotted on (O, R) Then the plotting of next pixels starts clock-wise....

That means the plotting starts from ($0, R$) and moving into the $2^{\text {nd }}$ Octant
while moving through the $2^{\text {nd }}$ octant, the Xvalue is increasing and Y value is decreasing

Observation

Observation

Observation

So, if we can obtain (X, Y) in $2^{\text {nd }}$ octant, we can calculate the points-

- $7^{\text {th }}$ Octant : (X,-Y)
- $6^{\text {th }}$ Octant: $(-X,-Y)$
- $3^{\text {rd }}$ Octant : (-X, Y)

So, if we can obtain (X,Y) in $2^{\text {nd }}$ octant, we can simply swap X and Y to get the points-

- $1^{\text {st }}$ Octant : (Y, X)
- $8^{\text {th }}$ Octant : $(\mathrm{Y},-\mathrm{X})$
- $5^{\text {th }}$ Octant : $(-\mathrm{Y},-\mathrm{X})$
- $4^{\text {th }}$ Octant $:(-\mathrm{Y}, \mathrm{X})$

Drawing in all the octants
So, if we can obtain
(X,Y) in $2^{\text {nd }}$ octant, we can calculate the points in other 7 octants

So, our target is to get the pixels of only $2^{\text {nd }}$ octant of the circumference

Next pixel is chosen (from Eor SE) to build the linesuccessively

Next pixel is chosen (from Eor SE) to build the linesuccessively

Next pixel is chosen (from Eor SE) to build the linesuccessively

Next pixel is chosen (from Eor SE) to build the linesuccessively

Next pixel is chosen (from Eor SE) to build the linesuccessively

Next pixel is chosen (from Eor SE) to build the linesuccessively

As we know that, In $2^{\text {nd }}$ Octant : $\mathbf{X}<\mathbf{Y}$ In $1^{\text {st }}$ Octant : $\mathbf{X}>\mathbf{Y}$

We will stop when $X>Y$, that means when $2^{\text {nd }}$ octant is completed

Equation of Circle and its function representation

$$
x^{2}+y^{2}=R^{2}
$$

$$
F(x, y)=x^{2}+y^{2}-R^{2}=0
$$

If $\mathbf{F}(\mathbf{X}, \mathbf{Y})=\mathbf{0}$, the point (X, Y) on the circle

If $\mathbf{F}(\mathbf{X}, \mathbf{Y})>\mathbf{o}$, the point (X, Y) is outside the circle

If $\mathbf{F}(\mathbf{X}, \mathbf{Y})<\mathbf{0}$, the point (X, Y) is inside the circle

Selecting E or SE

Selecting E or SE depends on closeness to the circumference.

If E is closer to circumference, then E is selected

If SE is closer, then SE is selected

If midpoint M is outside the circle, SE is closer to the circumference, So, $\mathbf{S E}$ is selected

If midpoint M is inside the circle, E is closer to the circumference, So, \mathbf{E} is selected

Selecting E or SE using Mid Point Criteria
We know, $F(x, y)=x^{2}+y^{2}-R^{2}$
Lets put the mid point M's coordinate in function $\mathrm{F}(\mathrm{X}, \mathrm{Y})$
$F(M)=F\left(X_{P}+1, Y_{P}-0.5\right)=\left(X_{P}+1\right)^{2}+\left(Y_{P}-0.5\right)^{2}-R^{2}$

Lets store $\mathbf{F}(\mathbf{M})$ in a variable \mathbf{d}
So, $\mathbf{d}=\mathbf{F}(\mathbf{M})$
d is called 'decision variable'

If $\mathbf{d}>=\mathbf{o}$, then midpoint M is outside the circle, SE is closer to the circumference, So, $\mathbf{S E}$ is selected

If $\mathbf{d}<\mathbf{o}$, then midpoint M is inside the circle, E is closer to the circumference, So, \mathbf{E} is selected

$$
\begin{aligned}
\mathbf{d}_{\mathbf{1}} & =\mathbf{F}\left(\mathbf{M}_{1}\right) \\
& =\mathbf{F}\left(\mathbf{X}_{\mathbf{P}}+\mathbf{1}, \mathbf{Y}_{\mathbf{P}^{-}} \mathbf{0 . 5}\right) \\
& =\left(\mathbf{X}_{\mathbf{P}}+\mathbf{1}\right)^{2}+\left(\mathbf{Y}_{\mathbf{P}^{-0}} \mathbf{0 . 5}\right)^{2-} \mathbf{R}^{\mathbf{2}}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{d}_{1} & =F\left(\mathbf{M}_{1}\right) \\
& =\mathbf{F}\left(\mathbf{X}_{\mathbf{P}}+\mathbf{1}, \mathbf{Y}_{\mathbf{P}}-\mathbf{0 . 5}\right) \\
& =\left(\mathbf{X}_{\mathbf{P}}+\mathbf{1}\right)^{2}+\left(\mathbf{Y}_{\mathbf{P}}-\mathbf{0 . 5}\right)^{2-} \mathbf{R}^{2}
\end{aligned}
$$

$$
\text { If } \mathbf{d}_{\mathbf{1}}<\mathbf{o}, \mathbf{E}\left(\mathbf{X}_{\mathrm{P}}=\mathbf{X}_{\mathrm{P}}+\mathbf{1}, \mathbf{Y}_{\mathrm{P}}\right)
$$

$$
\begin{aligned}
& \mathbf{d}_{\mathbf{1}}=\mathbf{F}\left(\mathbf{M}_{\mathbf{1}}\right) \\
&=\mathbf{F}\left(\mathbf{X}_{\mathbf{P}}+\mathbf{1}, \mathbf{Y}_{\mathbf{P}}-\mathbf{0 . 5}\right) \\
&=\left(\mathbf{X}_{\mathbf{P}}+\mathbf{1}\right)^{\mathbf{2}}+\left(\mathbf{Y}_{\mathbf{P}}-\mathbf{0 . 5}\right)^{\mathbf{2}}-\mathbf{R}^{\mathbf{2}} \\
& \text { If } \mathbf{d}_{\mathbf{1}}<\mathbf{0}, \mathbf{E}\left(\mathbf{X}_{\mathbf{P}}=\mathbf{X}_{\mathbf{P}}+\mathbf{1}, \mathbf{Y}_{\mathbf{P}}\right) \\
& \mathbf{d}_{\mathbf{2}}= \mathbf{F}\left(\mathbf{M}_{\mathbf{2}}\right) \\
&=\mathrm{F}\left(\mathrm{X}_{\mathrm{P}}+\mathbf{2}, \mathrm{Y}_{\mathrm{P}}-0.5\right) \\
&=\left(\mathrm{X}_{\mathrm{P}}+2\right)^{2}+\left(\mathrm{Y}_{\mathrm{P}}-0.5\right)^{2}-\mathrm{R}^{2} \\
&=\mathrm{X}_{\mathrm{P}}^{2}+4 \mathrm{X}_{\mathrm{P}}+4+\left(\mathrm{Y}_{\mathrm{P}}-0.5\right)^{2}-\mathrm{R}^{2} \\
&=\mathrm{X}_{\mathbf{P}}^{2}+2 \mathrm{X}_{\mathrm{P}}+\mathbf{1}+\left(\mathrm{Y}_{\mathrm{P}}-0.5\right)^{2}-\mathrm{R}^{2}+2 \mathrm{X}_{\mathrm{P}}+3 \\
&=\mathbf{d}_{\mathbf{1}}+\left(\mathbf{2} \mathbf{X}_{\mathbf{P}}+\mathbf{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{d}_{\mathbf{1}}=\mathbf{F}\left(\mathbf{M}_{\mathbf{1}}\right) \\
&=\mathbf{F}\left(\mathbf{X}_{\mathbf{P}}+\mathbf{1}, \mathbf{Y}_{\mathbf{P}}-\mathbf{0 . 5}\right) \\
&=\left(\mathbf{X}_{\mathbf{P}}+\mathbf{1}\right)^{\mathbf{2}}+\left(\mathbf{Y}_{\mathbf{P}} \mathbf{- 0 . 5}\right)^{\mathbf{2}-} \mathbf{R}^{\mathbf{2}} \\
& \text { If } \mathbf{d}_{\mathbf{1}}<\mathbf{0}, \mathbf{E}\left(\mathbf{X}_{\mathbf{P}}=\mathbf{X}_{\mathbf{P}}+\mathbf{1}, \mathbf{Y}_{\mathbf{P}}\right) \\
& \mathbf{d}_{\mathbf{2}}= \mathbf{F}\left(\mathbf{M}_{\mathbf{2}}\right) \\
&=\mathrm{F}\left(\mathrm{X}_{\mathrm{P}}+2, \mathrm{Y}_{\mathrm{P}}-0.5\right) \\
&=\left(\mathrm{X}_{\mathrm{P}}+\mathbf{2}\right)^{2}+\left(\mathrm{Y}_{\mathrm{P}}-0.5\right)^{2}-\mathrm{R}^{2} \\
&=\mathrm{X}_{\mathrm{P}}{ }^{2}+4 \mathrm{X}_{\mathrm{P}}+4+\left(\mathrm{Y}_{\bar{P}} 0.5\right)^{2}-\mathrm{R}^{2} \\
&=\mathrm{X}_{\mathbf{P}}{ }^{2}+2 \mathrm{X}_{\mathrm{P}}+1+\left(\mathrm{Y}_{\mathrm{P}}-0.5\right)^{2}-\mathrm{R}^{2}+2 \mathrm{X}_{\mathrm{P}}+3 \\
&=\mathbf{d}_{\mathbf{1}}+\left(\mathbf{2} \mathbf{X}_{\mathbf{P}}+\mathbf{3}\right)
\end{aligned}
$$

Every iteration after selecting E, we can

successively update our decision variable with-

$$
d_{\mathrm{NEW}}=\mathbf{d}_{\mathrm{OLD}}+\left(2 \mathbf{X}_{\mathbf{P}}+3\right)
$$

Bresenham's Mid Point Criteria : Successive Updating (for selecting SE)

$$
\begin{aligned}
\mathbf{d}_{\mathbf{1}} & =\mathbf{F}\left(\mathbf{M}_{1}\right) \\
& =\mathbf{F}\left(\mathbf{X}_{\mathbf{P}}+1, \mathbf{Y}_{\mathbf{P}^{-}} \mathbf{0 . 5}\right) \\
& =\left(\mathbf{X}_{\mathbf{P}}+1\right)^{2}+\left(\mathbf{Y}_{\mathbf{P}^{-}} \mathbf{0 . 5}\right)^{2}-\mathbf{R}^{2}
\end{aligned}
$$

Bresenham's Mid Point Criteria : Successive Updating (for selecting SE)

$$
\begin{aligned}
\mathbf{d}_{\mathbf{1}} & =\mathbf{F}\left(\mathbf{M}_{1}\right) \\
& =\mathbf{F}\left(\mathbf{X}_{\mathbf{P}}+\mathbf{1}, \mathbf{Y}_{\mathbf{P}}-\mathbf{0 . 5}\right) \\
& =\left(\mathbf{X}_{\mathbf{P}}+\mathbf{1}\right)^{2}+\left(\mathbf{Y}_{\mathbf{P}^{-0}} \mathbf{0 . 5}\right)^{2}-\mathbf{R}^{2}
\end{aligned}
$$

If $\mathbf{d}_{\mathbf{1}}>=\mathbf{0}, \mathbf{S E}\left(\mathbf{X}_{\mathbf{P}}=\mathbf{X}_{\mathbf{P}}+\mathbf{1}, Y_{P^{-1}}\right)$

Bresenham's Mid Point Criteria : Successive Updating (for selecting SE)

Every iteration after selecting NE, we can successively update our decision variable with-

$$
\mathbf{d}_{\text {NEW }}=\mathbf{d}_{\text {OLD }}+\left(2 \mathbf{X}_{\mathrm{P}}-2 \mathbf{Y}_{\mathrm{P}}+5\right)
$$

If $\mathbf{d}<\mathbf{0}$, then midpoint M is inside the circle, E is closer
to the circumference, So, \mathbf{E} is selected and do$\mathbf{d}=\mathbf{d}+\Delta \mathbf{E}$
Where, $\Delta \mathrm{E}=\mathbf{2} \mathrm{X}_{\mathrm{P}}+3$

If $\mathbf{d}>=\mathbf{o}$, then midpoint M is outside the circle, SE is closer
to the circumference, So, $\mathbf{S E}$ is selected and do$\mathbf{d}=\mathbf{d}+\Delta \mathbf{S E}$
Where, $\Delta \mathrm{SE}=\mathbf{2} \mathrm{X}_{\mathrm{P}}-\mathbf{2 Y _ { P }}+5$

$$
\begin{aligned}
\mathbf{d}_{\text {INIT }} & =F\left(M_{1}\right) \\
& =F(1, R-0.5) \\
& =(1)^{2}+(R-0.5)^{2}-R^{2} \\
& =1+R^{2}-R+0.25-R^{2} \\
& =1.25-R
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{d}_{\text {INIT }} & =F\left(M_{1}\right) \\
& =F(1, R-0.5) \\
& =(1)^{2}+(R-0.5)^{2}-R^{2} \\
& =1+R^{2}-R+0.25-R^{2} \\
& =1.25-R \\
& \approx \mathbf{1}-R
\end{aligned}
$$

$$
\begin{aligned}
& R=2 \\
& d=1-R=-1
\end{aligned}
$$

So, finally.....

$$
d_{\text {INIT }}=1-\mathbf{R}
$$

If $\mathbf{d}<\mathbf{o}$, then \mathbf{E} is selected, $\mathbf{d}=\mathbf{d}+\Delta \mathbf{E}$
If $\mathbf{d}>=\mathbf{o}$, then $\mathbf{S E}$ is selected, $\mathbf{d}=\mathbf{d}+\Delta \mathbf{S E}$
Where,

$$
\begin{aligned}
& \Delta \mathrm{E}=2 \mathrm{X}_{\mathrm{P}}+3 \\
& \Delta \mathrm{SE}=2 \mathrm{X}_{\mathrm{P}}-2 \mathrm{Y}_{\mathrm{P}}+5
\end{aligned}
$$

Algorithm

```
void MidpointCircle(int radius)
{
    int}x=0
    int y =radius;
    intd=1 -radius ;
    CirclePoints(x,y);
    while (y>x)
    {
        if(d<0) /* Select E*/
        d=d+2 *}x+3
        else
        { /* SelectSE*
        d=d +2 * (x-y) +5;
        y = y -1;
        }
    x=x+1;
    CirclePoints(x,y);
    }
}
```


Algorithm

```
void MidpointCircle(int radius)
{
    int }x=0
    inty =radius;
    intd=1 -radius ;
    CirclePoints(x,y);
    while (y>x)
    {
        if(d<0) /* Select E*/
        d=d+2*x+3;
        else
        { /* SelectSE*
        d=d +2 * (x-y) +5;
        y =y-1;
        }
    x=x+1;
    CirclePoints(x,y);
    }
}
```

```
CirclePoints (x,y)
    Plotpoint(x,y) ;
    Plotpoint (x,-y);
    Plotpoint(-x,y);
    Plotpoint(-x, -y);
    Plotpoint(y,x) ;
    Plotpoint(y, -x);
    Plotpoint(-y, x);
    Plotpoint(-y,-x) ;
end
```

10	${ }^{2}$		1	2	3	4	5	6
9								
$\frac{8}{7}$								
$\frac{7}{6}$								
$\frac{5}{4}$								

Given:

Radius , $\mathrm{R}=10$

> Given:
> Radius , $\mathrm{R}=10$
> $(\mathbf{x}, \mathbf{y})=(\mathbf{0}, \mathbf{1 0})$
> $\mathbf{h}=\mathbf{1}-\mathbf{R}=\mathbf{- 9}$

\mathbf{K}	$\mathbf{1}$						
$\mathbf{2 x}$	$\mathbf{0}$						
$\mathbf{2 y}$	20						
\mathbf{h}							
$\mathbf{(x , y)}$							

> Given:
> Radius, $\mathrm{R}=10$
> $(\mathbf{x}, \mathbf{y})=(\mathbf{0}, \mathbf{1 0})$
> $\mathbf{h}=\mathbf{1}-\mathbf{R}=\mathbf{- 9}$

\mathbf{K}	$\mathbf{1}$						
$\mathbf{2 x}$	0						
$\mathbf{2 y}$	20						
\mathbf{h}							
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$						
$\mathrm{h}<=0, \mathrm{E}$							

\mathbf{K}	$\mathbf{1}$						
$\mathbf{2 x}$	0						
$\mathbf{2 y}$	20						
\mathbf{h}	-6						
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$						

> Given:
> Radius, $\mathrm{R}=10$
> $(\mathbf{x}, \mathbf{y})=(\mathbf{0}, \mathbf{1 0})$
> $\mathbf{h}=\mathbf{1}-\mathbf{R}=\mathbf{- 9}$

\mathbf{K}	$\mathbf{1}$	$\mathbf{2}$					
$\mathbf{2 x}$	0	2					
$\mathbf{2 y}$	20	20					
\mathbf{h}	-6						
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$						

> Given:
> Radius, $\mathrm{R}=10$
> $(\mathbf{x}, \mathbf{y})=(\mathbf{0}, \mathbf{1 0})$
> $\mathbf{h}=\mathbf{1}-\mathbf{R}=\mathbf{- 9}$

\mathbf{K}	$\mathbf{1}$	$\mathbf{2}$					
$\mathbf{2 x}$	0	2					
$\mathbf{2 y}$	20	20					
\mathbf{h}	\mathbf{y}_{-6}						
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$	$\mathrm{E}(2,10)$					
$\mathrm{h}<=0, \mathrm{E}$							

\mathbf{K}	$\mathbf{1}$	$\mathbf{2}$					
$\mathbf{2 x}$	0	2					
$\mathbf{2 y}$	20	20					
\mathbf{h}	-6	-1					
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$	$\mathrm{E}(2,10)$					

Given:
Radius , $\mathrm{R}=10$
$(\mathbf{x}, \mathbf{y})=(\mathbf{0}, \mathbf{1 0})$
$h=1 \quad-R=-9$

\mathbf{K}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$				
$\mathbf{2 x}$	0	2	4				
$\mathbf{2 y}$	20	20	20				
\mathbf{h}	-6	-1					
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$	$\mathrm{E}(2,10)$					

Given:
Radius , $\mathrm{R}=10$
$(\mathbf{x}, \mathbf{y})=(\mathbf{0}, \mathbf{1 0})$
$h=1 \quad-R=-9$

\mathbf{K}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$				
$\mathbf{2 x}$	0	2	4				
$\mathbf{2 y}$	20	20	20				
\mathbf{h}	-6	v_{-1}					
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$	$\mathrm{E}(2,10)$	$\mathrm{E}(3,10)$				
$\mathrm{h}<=0, \mathrm{E}$							

> Given:
> Radius, $\mathrm{R}=10$
> $(\mathbf{x}, \mathbf{y})=(\mathbf{0}, \mathbf{1 0})$
> $\mathrm{h}=\mathbf{1}-\mathrm{R}=-\mathbf{9}$
> $\mathrm{h}=\mathrm{h}+\Delta \mathrm{E}=\mathrm{h}+\mathbf{2 x}+\mathbf{3}$
> $=-\mathbf{1}+\mathbf{4}+\mathbf{3}$
> $=6$

\mathbf{K}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$				
$\mathbf{2 x}$	0	2	4				
$\mathbf{2 y}$	20	20	20				
\mathbf{h}	-6	-1	6				
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$	$\mathrm{E}(2,10)$	$\mathrm{E}(3,10)$				

Given:
Radius , $\mathrm{R}=10$
$(\mathbf{x}, \mathbf{y})=(\mathbf{0}, \mathbf{1 0})$
$h=1 \quad-R=-9$

\mathbf{K}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$			
$\mathbf{2 x}$	0	2	4	6			
$\mathbf{2 y}$	20	20	20	20			
\mathbf{h}	-6	-1	$\mathbf{y}_{6} 6$				
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$	$\mathrm{E}(2,10)$	$\mathrm{E}(3,10)$	$\mathrm{S}(4,9)$			
$\mathrm{h}>0, \mathrm{SE}$							

> Given:
> Radius, $\mathrm{R}=10$
> $(\mathbf{x}, \mathbf{y})=(\mathbf{0}, \mathbf{1 0})$
> $\mathbf{h}=\mathbf{1}-\mathbf{R}=\mathbf{- 9}$
$h=h+\Delta S E=h+2 x-2 y+5$
$=6+6-20+5$
=-3

\mathbf{K}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$			
$\mathbf{2 x}$	0	2	4	6			
$\mathbf{2 y}$	20	20	20	20			
\mathbf{h}	-6	-1	6	-3			
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$	$\mathrm{E}(2,10)$	$\mathrm{E}(3,10)$	$\mathrm{S}(4,9)$			

Given:
Radius, $\mathrm{R}=10$
$(\mathbf{x}, \mathbf{y})=(\mathbf{0}, \mathbf{1 0})$
$h=1 \quad-R=-9$

\mathbf{K}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{2 x}$	0	2	4	6	8	10	12
$\mathbf{2 y}$	20	20	20	20	18	18	16
\mathbf{h}	-6	-1	6	-3	8	5	6
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$	$\mathrm{E}(2,10)$	$\mathrm{E}(3,10)$	$\mathrm{S}(4,9)$	$\mathrm{E}(5,9)$	$\mathrm{S}(6,8)$	$\mathrm{S}(7,7)$

Given:
Radius , $\mathrm{R}=10$
$(\mathbf{x}, \mathbf{y})=(\mathbf{0}, \mathbf{1 0})$
$h=1-R=-9$

\mathbf{K}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	7
$\mathbf{2 x}$	0	2	4	6	8	10	12
$\mathbf{2 y}$	20	20	20	20	18	18	16
\mathbf{h}	-6	-1	6	-3	8	5	6
$\mathbf{(x , y)}$	$\mathrm{E}(1,10)$	$\mathrm{E}(2,10)$	$\mathrm{E}(3,10)$	$\mathrm{S}(4,9)$	$\mathrm{E}(5,9)$	$\mathrm{S}(6,8)$	$\mathrm{S}(7,7)$

Practice Problem

- Perform the midpoint algorithm to draw a circle's portion at $7^{\text {th }}$ octant which has center at $(2,-3)$ and a radius of 7 pixels. Show each iterations and plot the points.

